Thursday, November 16, 2017

Ab Fab: Confabulation

Learning By Doing

To get post started, let's memorize a bunch of useless stuff. Do your best to memorize the following list:

banana
orange
kiwi
strawberry
peach
blueberry
mango
watermelon
lemon
grapefruit




What did you notice about the list? Did you reorganize the list to make the items easier to remember? Did you use any other memorization strategy?


"I have memories, but I can't tell if they're real." -K, Blade Runner 2049

In previous posts, we addressed the misconception that "memory is like a video recording." Instead, memories are reconstructed at the moment of recollection, and they are influenced by the way in which the memory is probed (e.g., "About how fast were the cars going when they hit [vs. smashed into] each other?"). Memories are also colored by one's emotional experience [1]. In recalling past events, the mind may put a positive spin on something that was horrific at the time the memory was created. A group of veterans, playing cards at the local VFW, fondly reminiscing of their time at war is a vivid example.

Pop Quiz! Without looking at the top of this post, rate how confident you are that the following words appeared in the original list [2].


Item High Med. High Medium Med. Low Low
Kiwi 5 4 5 2 1
Strawberry 5 4 5 2 1
Apple 5 4 5 2 1
Banana 5 4 5 2 1

Were you right? Some people mentally insert the word apple into the list because it is a highly iconic member of the category fruit. Activation of the category spreads to tightly knit members; thus, we infer that apple was on the list. This is may be a elementary example, but it is symptomatic of a much larger (and more interesting) issue. Memories are not indelibly stamped onto our neurons. Instead, we are prone to inserting new details at the time of retrieval.


Memory Insertion & False Memories

A much more serious example can be found in a line of research where scientists actually implanted false memories in children [3]. Scientists were able to implant false memories in about a quarter of their volunteers, and the false memories ranged from being lost in the mall to being attacked by a dog. The most outlandish implanted memory was convincing the participant that he or she had witnessed a demonic possession [4]!

Inferring an item on a list that wasn't originally there, or a false memory from childhood, are examples of confabulation, which is defined as a memory disturbance that is neither intentional nor created to deceive other people. The more commonplace version is usually just a harmless insertion of a memory that did not necessarily happen to that person. For example, on a work trip, I was completely convinced that it was my first overnight trip to West Virginia. I firmly believed that until one of my friends helpfully pointed out that I spent my 30th birthday in a resort in WV. He knew because he had been there with me! In my defense, the trip was a surprise by my wife, so I didn't know we were going to WV until we got there, and then I was shocked to see many of my good friends were there, too.


The S.T.E.M. Connection

The relevance of confabulation might not present a huge problem in middle- or high-school, but it may become an issue later in life. For example, the authorship of a scientific paper or assigning credit for an invention can become contentious when the parties involved selectively forget or insert false memories [5]. For example, George H. Daniels wrote a book entitled Science in American Society: A Social History (1971). A reviewer of his work pointed out that he had plagiarized entire paragraphs and other large sections without giving proper credit to the original source. Daniels was mortified, and he wrote an apology to the scientific community [6]. It is probably the case that Daniels did not intend to deceive his readers; instead, he falsely accepted these ideas as his own.

Aside from this specific (and potentially embarrassing) example, confabulation is important when thinking critically about someone's recollection of events. This is, of course, extremely important in eyewitness testimony (as we saw earlier). But it's also important to social scientists who rely on their participants' retrospective accounts of their behavior. Participants might think about what they logically should have done, instead of what they actually did. This inference can color the data that is ultimately collected.

In the end, we can all sympathize with K, the main character from the movie Blade Runner 2049 (2017), because our memories are subject to intrusions. He is rightfully skeptical of his memories because they can be difficult to verify if they are real (or not)! 


Share and Enjoy!

Dr. Bob

Going Beyond the Information Given

[1] A great example of this is in the Pixar movie Inside Out (2015).

[2] Using the recognition test with confidence ratings was used in: Brewer, W. F., & Treyens, J. C. (1981). Role of schemata in memory for places. Cognitive psychology, 13(2), 207-230.

[3] Elizabeth Loftus is probably the most widely recognized name in this area. A summary of her research can be found in her Ted Talk

[4] Mazzoni, G. A., Loftus, E. F., & Kirsch, I. (2001). Changing beliefs about implausible autobiographical events: a little plausibility goes a long way. Journal of Experimental Psychology: Applied, 7(1), 51-59.

[5] Goldberg, C. (2006) Have you ever plagiarized? If so, you're in good company. Retrieved from boston.com

[6] Daniels, G.H. (14 Jan 1972) AcknowledgementScience 175 (4018), 124-125.

Wednesday, November 1, 2017

Reading Room Material: Stranger Things & The Frontal Lobe

If you're like me, then you are probably working your way through the second season of Stranger Things. Imagine my delight as this particular episode (s2e3) touched on a familiar topic.

Stranger Things: Season 2, Episode 3 "The Pollywog"

The main characters are listening to a lecture by their favorite teacher (complete with overhead transparencies!). He describes one of the most famous people in the history of neuroscience [1]:


Scott ClarkeThe case of Phineas Gage is one of the great medical curiosities of all time. Phineas was a railroad worker in 1848 who had a nightmarish accident. A large iron rod was driven completely through his head. Phineas miraculously survived. He seemed fine. And physically, yes, he was. But his injury resulted in a complete change to his personality.

The story of Phineas Gage is a well worn tale, and it is told in nearly every undergraduate neuroscience course. Thus, I found it extremely curious that Mr. Clarke was telling this story to his 5th grade science class. I also found it curious that Mr. Clarke ends the story with "a complete change to his personality." He didn't explain in what way Phineas changed. 

According to The American Phrenological Journal and Repository of Science (1851), Gage's physician reported that he had become, "gross, profane, course, and vulgar to such a degree that his society was intolerable to decent people" [2]. In other words, Gage became a jerk. Given the change in his personality, it was assumed that function of the frontal lobe was for inhibiting behaviors and thoughts. No frontal lobe? No inhibition. 

That doesn't sound like a very fulfilling life. However, if you continue to dig into this fascinating story, there is a small ray of hope (unfortunately, that ray doesn't always make it into the textbooks). A few years after he recovered from his injuries (including a fungal infection!), Phineas's personality renormalized. He wasn't such a jerk, and he even held down a job driving a stagecoach [3]. 

The story of Phineas Gage is hopeful because it demonstrates the brain's amazing ability to overcome severe trauma. He didn't live a very long life, but Gage remains immortalized in the annals of neuroscience (as well as the greatest TV series of all time). 


Share and Enjoy!

Dr. Bob


More Material

[1] Read the transcript or watch the full episode.

[2] Fowler, O. S., & Fowler, L.N. (Eds.). (1851). The American Phrenological Journal and Repository of Science, Literature and General Intelligence, Volumes 13-14, New York, NY: Fowlers & Wells, p. 89.

[3] Hamilton, J. (May 21, 2017Why Brain Scientists Are Still Obsessed With The Curious Case Of Phineas Gage Retrieved from npr.org.